최근 다중 태스크 학습 연구에서는 관련성이 적은 작업들을 통합된 신경망에 같이 학습할 때 전체적인 성능이 저하된다는 문제가 있었다. 이를 해결하기 위해 기존의 연구에서는 동적 신경망 기술을 이용하여 신경망 구조를 변경하려 시도했으나, 이는 다양한 신경망 구조를 탐색하기 어렵다는 단점이 있었다.이에 DGIST(총장 국양)의 전기전자컴퓨터공학과 임성훈 교수팀이 신경망 구조 탐색 기술을 통해 다중 태스크 딥러닝 기술을 개발했다. 이 기술은 성능의 저하 없이도 여러 작업을 동시에 수행 할수 있게 해 향후 여러 작업을 효율적으로 수행해야 하
출처 : 인공지능신문 – 전체기사